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FOREWORD 

This document is the eighth of nine sections that comprise the final report  
prepared by the Minneapolis-Honeywell Regulator Company for  the National 

is issued in the following nine sections to facilitate updating as  progress  
LIL&"I&UU*LUY A n v n n - i i t i o a  9 n A  uy...'u Snspe *--*A** Administratinn .--I--I-^-.- ilnrlor ------ P.nntract  --------- NASr-27-  -.---- r ~ p r t _  

warrants : 

1529-TR1 

1529-TR2 

152 9-TR3 

15 2 9 -TR4 

1529-TR5 

1529-TR6 

1529-TR7 

1529-TR8 

1529-TR9 

An Introduction to Self-Evaluating State Vector Control 
of Linear Systems 

Modes of Control 

Measurement of the State Vector 

The Theory of Time-Optimal Control of Linear Systems 

Computational Solution of Optimal Control Problems 

The Theory of Average Power Optimal Control of Linear 
Systems 

Approximations to State Vector Control 

A Logical Net Mechanization for  Time-Optimal Regulation 

Adaptive Controllers Derived by Stability Considerations 

Section 1 (1529-TR1) provides the motivation for the r e sea rch  effort, de- 
fines problems, indicates the status, and presents computer resul ts  to 
show what can feasibly be accomplished at the present time. The computa- 
tional technique which is used to obtain trajectories satisfying the Maximum 
Principle is described. 

In section 2 it is shown that, given the vector differential equation 
x = Ax -+ bu (where x is an n vector, A an nxn constant matrix, b an nxl con- 
stant matr ix  and u a  sca la r ) ,  if any m components of the state vector can 
be brought to zero in finite time, a constructive method exists for reformu- 
lating the problem to that of bringing a single component of the state vector 
to zero. 

Section 3 shows that if a finite number of flexure modes a r e  sufficient to 
represent  the aeroelastic distortions of a flexible vehicle, the state vector of 
an aer ia l  vehicle can be measured with commonly available instrumentation. 
An approximate method for removing the flexure effects for the rigid body 
motion is also presented. 
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Theory of time-optimal control of l inear  plants that can be represented by 
l inear differential or l inear recurrent  equations is presented in section 4. 

Another s ta te  vector control theory is presented in section 5. It is shown 
that it can be specialized to yield a method for computing t ra jector ies  f o r  the 
special  time-optimal regulation problem where all components of the s ta te  
vector a r e  driven to the origin. 
t ra jector ies  for  driving all components of the state vector to the origin under 
an amplitude restr ic t ion on one of the s ta te  vector components if the forcing 
function is not restricted; 

Alternatively! it permits  computation of 

State vector regulation with an average power constraint on the forcing 
function is considered in section 6. 
the method is shown to yield a good approximation to seve ra l  kinds of time- 
opt im a1 regulators. 

Besides having meri t  in i ts  own right, 

Most aer ia l  vehicles do not require the performance that can be achieved 
with s ta te  vector control. Section 7 presents some approximation methods so 
s ta te  vector control theory can be used to obtain adequate performance with- 
out inordinate complexity. 

In section 8 a method is presented that provides a feasible mechanization 
for time-optimal regulators. 

The self-evaluating and adaptive control problems a r e  considered in 
section 9. 
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A LOGICAL NET MECHANIZATION FOR 
TIME-OPTIMAL REGULATION 

By,:Ered B. Smith, Jr. 

SUMMARY 9/66? 

A technique is described for  mechanizing re lay  controllers. A quantized 
phase space for  the plant is mapped into two o r  more points by a collection of 
logic elements whose Boolean inputs a re  the quantized variables,  
ing surfaces  a r e  known explicitly, the logic (the mapping function) of the controller 
may be computed in a straightforward manner. 
implicitly, the logic may be adjusted on a representative collection of particular 
values of the desired mapping function. 

If the switch- 

If the surfaces  a r e  known only 

Experimental  resul ts  a r e  presented for  time-optimal controLof third-order 
and fourth-order plants. 

SYMBOLS 

xj i A Boolean variable representing the jth 
= 0 if,gHase point is not within that quanta 
= 1 if phase point is within thah quanta 

u union - logical l lor l l  
n 

&Xi 
1 ux, ux, . .ux, 

X threshold element constants 

0 pitch attitude 

6 pitch r a t e  

cy angle of attack 

quanta of the ith variable 
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6 gimbal deflection 

u control variable 

INTRODUCTION 

1 1  Mechanization of closed-loop optimal" re lay  control lers  is usually difficult 
to  accomplish satisfactorily. 
overcoming two of the bas ic  difficulties: the implementation of the nonlinear 
control law and the utilization of a n  open-loop control law f o r  closed-loop control. 

This  section of the report  provides a means f o r  

The first difficulty arises because a mathematical cr i ter ion fo r  optimal 
quality of control usually demands a nonlinear relationship between the measured 
state of the system and the  control variables. 
shortcoming of the theory. 
control u as a function of the s ta te  variables x,  it mast frequently yields the 
control variable u as a function of time (t) fo r  given initial conditions x(0). 

The second difficulty is due to  a 
Instead of providing an  explicit expression fo r  the 

In some cases ,  these 
open-loop control problem 
dynamics of the system to  

problems can be  resolved by repeatedly solving the 
on a sufficiently fast t ime scale  compared with the 
obtain a n  adequate approximation to  the desired closed- 

loop control. 
time-optimal control of a fourth-order system with real roots.  
provides more  information and demands a more  complex control computer than 
is needed for  the time-invariant control problem. 

This  is the method used in ref. 1 t o  obtain zero-dimensional 
Such a procedure 

It has  often been suggested that when the optimum control variable is bang- 
bang, the  switch t imes  of a collection of open-loop solutions could be  used t o  
define the  closed-loop control l aw.  The method presented he re  is related to  
that procedure. 
define those regions in phase space associated with a positive forcing function 
and those associated with a negative one, In order  than only a finite number of 
points need b e  considered, the phase space of measured var iables  is quantized 
and a sign associated with each hypercube. This  introduces a n  approximation 
in the sur face  separating the  regions of different sign. It is assumed that the 
control can b e  made acceptably close t o  optimum by choosing a sufficiently fine 
quantization. 
and assigning signs to  the quanta, but suggested a memory location fo r  each 
quanta using a magnetic drum o r  core memory. 
but memory requirements  become prohibitive. 
into 32 quanta (a reasonable fineness for  good approximation to  the optimum 
response),  more  than 10 It w i l l  be shown 
that it is possible t o  collect together those points with the same  sign in a logic 
expression and mechanize th i s  w i t h  a smal l  number of threshold logic elements 
without losing the flexibility associated with drum o r  co re  storage. 

A collection of optimum open-loop t ra jec tor ies  is used to 

Hopkin and Iwama (ref. 2)  took a s imi la r  approach in  quantizing 

This  provides great  flexibility 
If five var iables  are  each divided 

7 memory locations are  required.  

Such a 
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procedure is applicable in principle to control of any system in which thecontrol 
variable, decision, o r  classification to b e  made is one of a finite number of 
s ta tes  and the desired output s ta te  is known for  every input s ta te  (every possible 
combination of input variables). 
a large number of "neighboring" input s ta tes ,  then only a representative sample 
of the input and corresponding output s ta te  is required. This has provided the 
basis for  many of the pattern recognition experiments and, in the work presented 

r ep re  sent at ive open-loop optimum t r aj  e c tor ie s . 

When the desired output state is the same f o r  

here, fol-liis the basis fer obtaitiifig 2 cefitrolier f rom 2 r~?2ti-;z!j. small  S C ~  of 

CONTROLLER DESIGN 

When control specification is given only implicitly through a se t  of desired 
responses,  it is not possible to completely separate  the problems of mechanization 
from those of controller synthesis. 
controller design is sliggested in this subsection. 
mechanization of a logic function which expresses  an assumed closed-loop control 
law u(x). 
the control law is not known explicitly, a method is provided for adjusting the 
logic to make the controller fit the known information. 

A solution of this combined problem of 
It begins with a proposed 

If the control law is explicitly known then the problem ends there. If 

Control Logic 

It is f i r s t  necessary to transform the usua l  form of closed-loop control 
into some form of logic expression. This is done by dividing the region of 
of each of the m variables into k sub-regions called quanta (figure la ) .  If 

r < x i L r  
j- 1 j 

then the variable xi is said to be in the jth quanta. A Boolean variable, 

j i = B , 2  m 
i j =  1 , 2  O . O  k X 

law 
interest  

j is defined for  each of the mk quanta. An xi has the value one if the magnitude of 
the ith measured variable xi, is in the jth quanta, and has the value zero if the 
magnitude is not. 
cubes, each of which is specified by a s e t  of m quanta. 

The m-dimensional phase space is thus divided into km hyper- 
A switching function 

is defined f o r  each of these hypercubes. 
i f  a measured phase point is within that hypeFcube (all  xdi = 1) o r  the value zero of 
the phase point is not within it (at least one x i i =  0). If the number of measure-  
ments , m, is equal to the o rde r  of the system, n, and the plant being controlled 
is time -invariant, then control l a w  uax) w i l l  divide the ndimensional  space into 
regions in which the control variables a r e  uniquely determined. 
separating these regions is called the switching surface. 
variable s ta te  (set  of unique signs) may be associated with each of the n-dimen- 
sional hypercubes except those through which a switching surface passes.  
may be assigned a s ta te  in any consistent manner. If m <  n, then there may be 
regions in the m space in which the state of the control variable is not uniquely 
defined. 

This switching-function has the value one 

The surface 
A unique control 

These 

E 
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It ' is assumed, however, that a state is assigned in some manner t o  each 
hypercube. 
is within any of the hypercubes having the  same control variable state, may 
then b e  written. 

A logic function, F, which is t r u e  when the measured phase point 

The function F has the form,  

F = VQ (all Q of same control vadiable s ta te)  (1) 

(The U notationwill be  used here fo r  logical " or" t o  avoid confusion with the 
algebraic operation of addition to b e  used later on the Boolean variables.  ) 

For example, the logic function collecting positive hypercubes of figure lb 
is, 

1 2 
F = VQ = x 2 u  xz ( X  2 I) x 3 u X I  4 ) U  x 2  3 *4 

1 1 c . v . 0  
A mechanization of th i s  function provides a controller based on the quantized 
switching surface of f igure lb. 
of the surface,  equation (4) is t r u e  (one) and vice versa .  
(2)  can b e  realized by a number of t y p e s  of hardware,  but the type which s e e m s  
most promising is threshold logic. 
a set of threshold elements. 
major  changes in the logic function generated can b e  made by s imple changes 
of constants. 

Whenever a phase point is on the positive s ide  
The logic of equation 

Any logic function can b e  represented by 
Within a given framework of elements, very 

The expression for  a single threshold logic element is 

T = sign [.yi xi + A ] 
0 

(3)  

where 

Yi are Boolean variables having values 0 o r  1 

Ai, i = 0, 1, 2, - - are constants 

T 
algebraic summation 
is considered t r u e  (T = 1) if the sign of bracket  t e r m s  is positive o r  
false (T = 0) if sign of bracket t e r m s  is negative o r  z e r o  

Quite different logic functions can be mechanized by such a n  element by 
simple changes of constants, X i .  For example, using procedures  described 
in the appendix it is possible t o  compute a single logic element which correct ly  
maps points on either side of a large c l a s s  of monotonic surfaces  of high 
dimensions. Although optimum switching surfaces  for  sys tems having m o r e  
than one switch are not monotonic, work presented later in this  section of 
the repor t  shows that the control logic for  a number of such switching sur faces  
can be adequately approximated by a single element. A second-order example 
shows that some non-monotonic surfaces can b e  exactly mapped by a single 
e lem ent . 

C 
v 
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Linear programming provides one technique fo r  computing constants, X i  , 
if the logic function is realizable by a single element. However, the set of 
simultaneous equations and inequalities which must be solved is prohibitively 
large fo r  th i s  application because of the la rge  number of Boolean variables.  
A suitable way of finding X I S  fo r  the present application is through the use of 
the constructive theorems of ref. 3; see appendices. 

function of the form of equation (l)&ppendix: Corollary 2). 
elements and their  constants is not unique and it is up t o  the designer to  find 

These theorems permit  
complete speciflcat;on of at least  or,& set  of threshold elements fer any ! w i r  b-- 

This  set of 

tile m u s t  suitable sei. A s  ail eiiaiiiple sf the of the t h e ~ r e r r ; ~  t h ~  t h r ~ s h d c !  
element realizing the logic of equaiion 2 is computed in 
resu l t  is, 

c 

the  appendix. The  

J 

It is seen that equation (4) is positive whenever equation (2)  is t rue ,  and 
negative when not t rue  and the desired divisio’n of space shown in figure l b  
is mechanized. 

For plants having complex roots  the optimum switching surface may not 
b e  even approximately monotonic outside the n -1  switching region. Fo r  example, 
the t ime-optimal switching surface f o r  one-dimensional control of a second-order 
plant with complex roots  is shown in figure 2. 
a single threshold element t o  correctly map the points on one side of the quantized 
surface.  It is expected, however, 
that one element wihlnot, in general, be  sufficient fo r  exact mapping of such 
sur faces  fo r  higher order  plants. 

In this  case it is possible t o  find 

Constants fo r  the element a r e  given in table 8. 

The quantized switching surface for one-dimensional time-optimal control 
of a third-order plant with real roots  is shown in figure 3.  
monotonic in the region of interest  and is correct ly  mapped by the  single 
element 

This  sur face  is 

l - 3  +16 j j 1 
xi  + x o l  u = sign I z-: z 

i = l  j = - l 6  ” L J 

Constants f o r  this  element are given in table 91, Because of symmetry about 
the origin, the surface in only one half of the space is considered. 
responses  f o r  this plant using a controller with this logic are  presented later. 

Typical 
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Logic Adjustment , 

The ability t o  compute threshold elements fo r  mechanizing a given logic 
expression discussed in the previous paragraphs is of little value fo r  controller 
mechanization when the switching surface is not known explicitly. 
sf  o rde r  greater thar, three, this is t h e  usual C ~ S P .  

For plants 

Solution of the mathematical optimization problem most often yields a 
specification for the zontro? vsri2bk 2s  2 function of time. Each S',?r,h solution 
provides implicit information about t h e  switching surface through the switch 
t imes.  
of positive and negative control variable in the mrspace.  In the quantized 
space a finite set of such trajectories,  properly distributed throughout the 
space, is sufficient t o  define the  optimum control variable sign fo r  every 
hypercube. 
(expensive) and is in fact, not necessary because of the  high probability of a 
given hypercubebaving the  same sign as  its neighbors. 
of threshold elements is assumed, a trial and adjustment of the logic based on 
an  incomplete set of t ra jec tor ies  can be used t o  approximate the implicitly 
defined switching function. 
schematically in figure 4a. A random initial condition x(0) is chosen from the 
x-region of interest  and the optimal solution u(t,x(O)) obtained. This  x(0) and 
u(t) are then applied open-loop to the equations describing the  system t o  b e  
control1ed;and at periodic t ime intervals, the optimum control variable is 
compared with that specified by the  logic network f o r  that x(t). If the two 
control variables u(t) and u(x(t)) are in the same  state, no change is made and 
the equations are integrated through the next t ime increment. If the two control 
var iables  are in different states, the logic of the net is changed by changing the  
appropriate constants of the threshold elements in a direction tending t o  give 
the cor rec t  answer fo r  that point. 

Each open-loop t ra jectory provides par t ia l  information about the  regions 

To obtain such a complete set of t ra jec tor ies  is very time-consuming 

If a form or framework 

Such a procedure is called "training" and is shown 

For example, if the logic is of the form,  

and 
hn 
n -. . ,  x h1 x.h2 +1, x( t )  .= x 1  , u(t) = 

u(x( t ) )  = -1 (wrong sign) 
hi  

less negative by m units. If i t  is still of wrong sign, another correction 
then Ai , i = 1, 2 * * -  * m a r e  each increased by one increment. This  makes 

can b e  applied or the equations can be integrated through the next t ime  increment 
and another correction not applied until the next t ime  that point (hypercube) is 
passed through. 
procedure. 
p a s s  through a point. 

ExiXj J 

Such considerations govern the nature of convergence of the 
In most work reported here  one correction is applied for  each 
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It is not necessary of course t o  use open-loop responses  in the adjustment. 
The logic could just as readily be  trained to  I '  mimic"'hnother controller 
operating in a closed loop by placing it in parallel  with the  controller o r  by 

looking at'' operating records.  1 1  

There  are two ways of determining how w e l l  and to  what extent the logic 
r n l  adjustment is proceeding. 

points in e r r o r .  
t ra jec tor ies  are  shown in f igures  5, 6, and 7 for  third- and fourth-order optimal 
t ra jector ies .  
than 10 per  cent and then levels off as final adjustments are made on points 
near  the  switching surface. 
function of the  resolution permitted in the  1;'s. 

The second method of evaluating the stage of logic adjustment is t o  use  
the logic as a controller (figure 4b) to permit qualitative evaluation of the 
responses.  
once or tw ice  during the training t o  obtain some feel fo r  the control character-  
istics relative t o  the training curve. 

~ r i e  first is to  keep track of the  pei-celitage of 
Typical plots of per  cent e r r o r  versus  number of training 

it is seen tnat the number of e r r o r s  drops very rapidly io  less 

The final apparent leveling off is pr imari ly  a 

This  is a more  time-consuming check and is normally done only 

APPLICATIONS - TIME-OPTIMAL CONTROL 

Minimum response t ime w a s  chosen as the optimization cr i ter ion on 
which t o  test  the ideas previously discussed. The control variable is known 
to  be  bang-bang up t o  the response time,after which it is either turned off 
(for zero-dimensional control) o r  a linear control switched in (to control the 
plant target  set  about the origin f o r  higher dimensional control). 
a representative set of t ra jec tor ies  exterior to the target  set it is most 
efficient to  choose a set of initial conditions uniformly distributed in state 
space and t o  find the optimum control variable u(t,x(O) by solving the set of 
transcendental  equations described in section 1. Solutions are  then selected 
at random from this set and open-loop t ra jector ies  computed at intervals  
of 0.10 seconds and stored on magnetic tape for  the logic adjustment program. 
The training o r  logic adjustment program averaged about 20  minutes pe r  
thousand training t ra jec tor ies  on a Honeywell H-800 general  purpose digital 
computer. 
typical 250, OOOpound launch vehicle at the maximum- q flight conditions. 
Pitch attitude provides fourth-order equations; pitch rate control, third order .  
Each of these is discussed in the  following paragraphs with presentation of 
simulation resul ts .  

To obtain 

The methods are demonstrated by developing control lers  f o r  a 
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-u.  U J i J U  

-0. 0274 -0. 0421 
n nr, n 

One-Dimensional Time-Optirhal 
Control of Third-Order Plant 

The requirement that pitch rate b e  brought t o  ze ro  in minimum t ime end held 
there  specifies a one-dimensional time-optimal controller. Ideally, e is 
brought in minimum t ime to  a line segment in the & , CY, 6 -space and held 
the re  with a unique l inear control (considered to  be the third state of a three- 
state controller). In this  case,  the line segment and l inear  controller are  

e(tT, = 0 

2. 140 CY (3') - 4. 4046(T) 5 0 
f !1i3(T)I = 7.  18 

u (after response t ime)  = -0. 1625 CY + 0. ;I952 6 

(Illustration and discussion of specification of control lers  and target  sets are 
given in sections 1 and 4. ) 

Because of surface approximation i n  quantization and non-ideal components, 
system motion t o  some small  region about the line segment must be accepted. 
The manner in  which the l inear  control s ta te  is switched in is shown in f igure 8. 
The function 

x i /  - A  
i= 1 

is used t o  switch from the bang-bang state t o  the l inear state. The 
n 

i= 1 
a i s i =  0 

is t h e  equation of the target line,and when the e r r o r  in this is less than A 
(chosen to  be equivalent t o  b e  approximatkly one quanta) re lay  R pulls in. 

The quantized optimum switching surface fo r  the system is shown in 
figure 3 .  
with solutions f o r  u(t, x(0)) section 1, the ~ ( 0 ) ' s  being chosen in the center 
of each cube. 
element all hypercubes on one side of the  surface are  given in table 11. 

This  surface representation w a s  obtained by "bracketing" it 

The computed constants f o r  collecting wi th  a single threshold 
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Some typical responses  of the system with the  computed logic are shown 
in f igure 9. Quantization intervals were: 

A, = 0.00625 r a d / s e c  
ACY = 0.003125 r ad  
A6 = 3 . 3 3 8 2 5  rad  

in the range 
*' < 

-0.05 4. CY 6 0 .05  
0 6 = 0 .1  

-0.1 5 e = 0 .1  

< 

The effect of quantized switching surface can be  noted in  the traces of the 
control variable and gimbal deflection, 6. Pitch rate ,  b ,  is brought to  
within the first quanta in all cases  and held there wi th  t he  theoretical  control 
variable of equation ( 8 ) ,  which keeps ,i~ a constant. The necessity for  a 
control function to  take out smal l  e r r o r s  in 0 after the response t ime is 
shown in the third trace of figure 9. Angle of attack, CY, is seen $0 diverge 
after the  response t ime because of the sma l l  constant e r r o r  in 6 .  This  is 
corrected in subsequent simulations by using l inear switching t o  take out 
res idual  e r r o r s .  

To  obtain a comparison of computed logic and adjusted logic control, a 
set of 152 open-loop t ra jec tor ies  with initial conditions fai r ly  uniformly dis-  
tributed throughout the space of interest  w e r e  obtained. Tra jec tor ies  with 
switches outside the region of interest  w e r e  omitted even though the  initial 
conditions w e r e  within. This  set of t ra jec tor ies  w a s  taken in random order  
and used to  adjust a single threshold element in t h e  manner shown in figure 
4a and discussed earlier. The per  cent e r r o r ,  ( e r r o r s  in N points)/N as 
a function of the number of t ra jector ies  used, is shown in the training curve 
of f igure 5.  There  w a s  considerable sca t te r  in the individual points and only 
the smooth curve t rend is shown. First switch points are  those between the 
initial condition and the  first switch time, second switch points those between 
the first switch t ime  and the second, etc. 
w e r e  all zero.  
ing procedure, the weights of TableXIand the  closed-loop responses  of figure 
10 w e r e  obtained. 
f igure 9 using computed logic. 
w a s  used in the third control variable state instead of the control of equation 
(8). 
would undoubtedly improve the  approximation t o  optimum response. 

Initial constants for  the logic 
After repeating these 152 t ra jec tor ies  18 t imes  in the t ra in-  

These responses  a r e  good approximations t o  those of 
Linear switching bringing 6 and 6' t o  z e r o  

The  trend of the training curve is still downward,and fur ther  training 
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CY 

6 
- -  

One-Dimensional Time-Optimal 
Control of a Fourth-Order Plant 

1 

The fourth-order plant equations a r e  obtained by adding a n  equation fo r  
pitch attitude to equation(7~~. The plant equations become, 

0 
2; 140 

.O. 0274 
0 

-4- 404 

-0.02 

kl 
1.1 + - O I  0 

- O l  0.2 

Requiring pitch attitude be brought to  zero in  minimum t ime and held the re  
specifies a one-dimensional target,  

O(T) '= 0 

O(T) = 0 

2. 140 CY (T)t - 4. 4046,(T) I= 0 

I6(T)I 7. 18 

u (after ??) = -0. 1625 CY + 0. 1952 6 

(9 j 

(10) 

It w a s  not practical  t o  bracket the fourdimensional  sur face  as w a s  done in 
the third-order sample. 
chosen at uniform intervals  in the arbi t rar i ly  defined region of interest  of the 
four space,and the method of section 1 w a s  then used to  obtain the  optimum 
forcing function f o r  each initial condition, 
o rder ,  points on open-loop t ra jector ies  computed at intervals  of 0. 10 seconds, 
and the quantized coordinates of each point s tored on magnetic tape. 
with one o r  more  switch points outside the region of interest  w e r e  omitted. This  
provided a set of 198 t ra jec tor ies  (2435 points) in the space,  

A set of approximately400 initial conditions was 

These  solutions w e r e  taken in random 

Tra jec tor ies  

o l e  ~ _ o . . i  
-0.12 L e L O .  12 
-0 .1  l a  LO. 1 

-0. 12 I- 6 L O .  12 

Quantization intervals in this  space were, 

A, = 0.00625 

A;, = 0.00750 

ACY = 0.00625 

+ = 0.00750 

(12) 
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f o r  a total of 219 = 524,288 four-dimensional cubes. 
t ra jector ies  w a s  then used t o  adjust the logic of single threshold element 
in the manner previously described, The training curve of figure 6 shows 
the convergence of the adjustment procedure. Initial logic constants w e r e  
taken t o  b e  zero.  A s  in the training of the  third-order logic, the e r r o r s  are 
down to  10 per  cent after only 100 trajectories.  After 1000 t ra jector ies ,  
e r r o r s  are down to  approximately five per. cent, aiid after 5333 trajectories 
down to  about 2. 5 per  cent. 
pr imari ly  determined by the functional fo rm assumed f o r  the logic (in figure 
6, functionai fo rm is a single threshold element) arid by the i-esohtim p e r -  
mitted in the logic constants. R e  olution is defined h e r e  as the rat io  of the 

is inereasink during the training process((figure 6 )  and at 5000 t ra jector ies  
is artifically increased by a factor of two. This  causes  a pronounced jump 
downward in the fractional e r r o r s ,  especially second and third switch points. 
A t  7500 t ra jector ies ,  it is again increased hy two,making it approximately 
one par t  in 80. At 11,000 trajectories,  it is increased t o  approximately one 
part  in 800. 
s tages  of training (198, 2100,and 11,000 t ra jector ies)  are  shown in figure 11. 
ResoliAion of one part  in  80iuas the limit of the available hardware for  the 
fourth-order controller so that control could not b e  evaluated at 13,000 
t ra jector ies .  It is seen that the first 
controller has  not yet stabilized it although the e r r o r s  are  less than 10 per  
cent. 
but does not provide anything approaching optimum response.  
final controller (figure l lc) ,  after 11,00,0 t ra jec tor ies  does provide a good 
approximation t o  an optimum controller:' Additional typical responses  for  
the final controller are given in figures 12  and 13. 
system, a linear switching is used a s  the  third state of the control variable 
and reduces the small  res idual  e r r o r s  within the smallest  quanta. 
switching function used is given in figure 8. 

The  sample set of 

The ultimate fractional e r r o r s  attainable are 

maximum x? t o  the increment of XI ? when an  e r r o r  is made, The  resolution 

Closed-loop control responses using logic at three  different 

The plant is statically unstable. 

The  second controller (figure l l b )  has  apparently stabilized the  system 
The third and 

A s  in the third-order 

The 

The s a m e  sample of t ra jector ies  w a s  used t o  adjust the logic of the next 
s tep up in logical complexity - a set  of orthogonal threshold elements. 
(Orthogonality meaning that one and only one element of the set w i l l  have 
an output fo r  any input. ) Such a set  was obtained by dividing the phase space 
into non-intersecting regions and assigning a threshold element t o  each one. 
The  training curve for  a set of 16 elements is shown in figure 7.. The 16 
regions in the space of equation (11) were defined by the  hyperplanes, 

e = 0 .05  

e =  0 

C Y =  0 

6 =  0 

:; 
Logic ccnstacts for  the controller.1are given in  table IV. 
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and the boundaries of the region of interest, equation (11). 
convergence is somewhat more  rapid than in the single element case.  
e r r o r  levels w e r e  reached with a resolution in X ' s  of approximately one-half that 
required f o r  the single element. 
analog investigation of this  system. 

It is seen that 
Equivalent 

Limitations of t ime and equipment prevented 

M echani zation 

The  threshold element required for mechanization of the th i rd-  and fourth- 
order  controllers described he re  is of unusual nature. 
of inputs (112 for  the fourth-order system) only n of which are  "active" fo r  
any given input. Its weighting elements must have quite high resolution 
(approximately one par t  in 400 for  the computed third-order logic). To 
accomplish this  most rapidly and economically fo r  the simulation study, the 
c-l-itputs of commercial  ladder networks, one for  each of the n variables,  w e r e  
summed in a standard analog amplifier. Quantization of the analog var iables  
w a s  accomplished by a standard analog-to-digital conversion channel fo r  each 
variable. 
one par t  in 16)  w a s  found adequate for the sys tems investigated. 
t rans is tor  logic w a s  used t o  decode the binary number and apply the proper  
inputs to  the ladder network. The system is shown schematically in figure 
14. 
it w a s  sometimes necessary  to  subtract a l inear function of the coordinates 
x i  f rom the discrete  switching functions. 
that the deviations from the line at the center of each quanta 
of the smallest  ladder step and the maximum deviation w a s  less than 64. 
In these  cases the actual switching function mechanized w a s  

It has  a large number 

A binary number of four  bits plus sign (quantizing magnitude t o  
Diode- 

To obtain the resolution required f rom the six bit ladder (one part  in 641, 

The l inear function was chosen so 
w a s  a multiple 

-7 n +16 n 
X j X j  f Q . X '  

1 i l  i= 1 i i  
2 

' Discussion of Simulation 

A number of points in  the simulation resu l t s  indicate severa l  conclusions 
that are  worthy of special note. 
t o  one par t  in 16  (four bit plus sign binary numbers) appears  to  be  adequately 
fine for  switching surface quantization i'f a l inear switching is used t o  reduce 
residual  e r r o r s  within the smallest  quanta. A nonlinear quantization with 
grea te r  accuracy near  the origin or  target set might be  advantageous. 
short  investigation of this proved inconclusive. 

The  quantization of the s ta te  variable magnitude 

A 
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A surprisingly sma l l  set of representative t ra jec tor ies  defines a good 
controller through the logic training procedure. In the fourth-order example , 
the set  of 198 t ra jec tor ies  with points in less than 0. 5 p e r  cent of the hyper- 
cubes in the phase space gave a good approximation t o  an  optimum controller. 
The effectiveness of these points is greater than a set of randomly selected 
points because after the first switch every point is on the switching sur face .  
The  set of initial conditions on which the controiier w a s  evaluated w a s  mucn 
l a r g e r  than the typical ones presented in f igures  12  and 13. 
evaluation on the fourth-order plant, the logic w a s  used as t h e  controller 
for a 13th-order flexible launch vehicle (section 1). 
conditions w e r e  good. 
to  e i ther  the small  sample s ize  o r  the incorrect  classification by the logic of 
the  points being trained on. Although less  than two p e r  cent of these points are 
in e r r o r  a t  the stage of the analog test, those are the cr i t ical  points on or  
near  the switching surface. The resolution of the  logic (one part  i n  80) at 
th i s  stage is a limiting factor in  the  correct classification of points. 
resolution is increased by 30 (to one part in  800) ,errors  drop t o  about one 
per  cent. 

In addition to 

Responses for  aii initial 
Departures  f rom optimum are pr imari ly  attributed 

When the  

CONCLUSIONS 

It is possible t o  s to re  information about surfaces  o r  regions in phase 
space of high dimension without complex hardware by quantizing coordinates 
and collecting members  of the same  sets with logic elements. 

Quantization may be  relatively coarse and still give good control. 

If limited information about the  space is known through a number of 
sample responses  with desired characterist ics,  a controller may be obtained 
by adjusting logic t o  give these responses. 
representative,  then the  controller obtained w i l l  provide control with desirable  
character is t ics  for  a much wider class of inputs than the sample set .  

If the  sample set is sufficiently 

Using the time-optimal cr i ter ion to obtain a set  of sample responses ,  
c.ontrollers fo r  plants up t o  fourth-order with real roots  may b e  designed 
quickly (a few hours computer t ime)  by simulating the system and adjusting 
the logic digitally. 

The design procedure seems  practical and applicable t o  plants of higher 
o rde r  than fourth and t o  plants with complex roots.  

Physical  implementation of fixed controllers is straightforward. The 
result ing controller is simple and could be  made more  reliable than a digital 
computer. 
deposition techniques. 

Implementation is w e l l  suited to  microminiaturization or molecular 
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Additional work is desirable in the area of specifying a more  general  set 
of threshold logic elements than those investigated here.  Such a set should 
increase the speed of convergence of the adjustment procedure,  reduce t h e  
resolution required in the weighting elements t o  a low level, and b e  capable 
of mapping more  complex surfaces.  A multi-level set of threshold elements 
capable of mechanizing logic collecting points on one side of any continuous 
surface seems  2 distinct pcssibility. This wc rk shculd take into consideration 
the nature  of elements best  suited for physical implementation (number of 
inputs per  element, resolutions easily attainable, etc. ). 

Additional work is a l so  desirable in t h e  area of utilizing the adjustable 
Such a study would investigate c r i te r ia  f o r  adjustment nature of the logic. 

based on the  performance of the logic itself (such as smoothness o r  continuity 
of output). o r  performance of the plant under control by  it o r  a combination 
of the two. The study should a l so  investigate the various "var iable  memory" 
devices available, possibly suggest additional ones, and construct a logic 
system for  simulation purposes based on the most promising. 
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APPENDIX 

COMPUTATION O F  THRESHOLD ELEMENTS 

Four theorems of ref. 3 w e r e  usefui in the work reported. Siightiy 
modified f o r m s  of these theorems a r e  given here .  Two corol lar ies  appli- 
cable to division of n-dimensional space by threshold elements are  proved. 
An example computation of a threshoid eiement for  a switcning surface is 
given. 

Definition: The threshold operator, T ,  converts the algebraic expression 
g = a1 x1  + a2 x2  + . . . an yn - a,, into a switching function,F, having the 
value ze ro  o r  one depending on whether g is grea te r  than zero,  i. e . ,  

Physical  implementation of T(g)  is called a threshold element. 

Theorem I: If switching function F is of the fo rm F = iz.l f i ,  where fi are  
logic functions having value 0, 1, then an algebraic function g such that 
F = T(g) is, 

n 

n 
g = f .  - (n-1) 

1 i= 1 

Corollary 1: 
such an  algebraic expression. 
Q, representing each hypercube is specified by an  expression of the form,  

Each hypercube in  n-dimensional phase space is specifiable by 
A s  discussed in the  text, the switching function, 

j ,  j 2  jn Q = x1 x2  . . . ,  x n 
j 

where xi take on values 0, 1 depending on whether a phase point in question 
is within that quanta or not. Consequently f rom theorem I 

Theorem 11: If a switching function F is of the fo rm F = f.l u f 2  . . . Uf,, 
then an algebraic function g such that F = T(g) is 

n 

i= 1 i g =  l2 f 

2G 
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Corollary 2: A switching function U, collecting any set  of hypercubes in a n  
n-dimensional space is representable by a collection of threshold elements 
U = T [ZT(g)] . This  follows directly f rom dorollary 1 and theorem 11. 

Definition: Two algebraic functions, g1 and g2”re  said to b e  equivalent i f  

andwhen g > 0, g1 > o  
< 10; g l  5 0  8 2  - 

2 

Definition: 
when the  Boolean var iablesofg take on all possible combinations of 0, 1. 
b )  Max g 5-0 is the largest  value less  than o r  equal t o  ze ro  taken on by g 
under such conditions. c)  Min g (xi = 1) > 0, Max g ( X i  = 1) 5 0 are Min g>O 
and Max g <  - 0 under conditions that X i  is considered constant equal to 1. 

Theorem 111: 

a) min g > 0 is the smallest value g rea t e r  than z e r o  taken by g 

n 
Let g = izl a i  Yi - k, k 2 0  

a) 
b )  If Max g 
c) 

If Min g > 0 is p, g1 = g - s is equivalent t o  g,O 5 s < p. 

0 is p, g1 = g + r is equivalent to  g, 0 I r L p. 
If Min g (x. = 1) > 0 is p, g which is obtained by changing a; to  
a j  - s is eh iva len t  t o  g, o 5 s < p, 1 I_ j I n .  

j d)  If Max g (x. = 1) I 0 is -p, g, obtained by changing a.  t o  a 
equivalent Zo g, o I r I j ,  1 I j <_n. J 

e) Functions g and Kg a r e  equivalent for  any real K > 0. 

Theorem IV: A switching function of the form F1 = T LT(g1) + T(g ) 
equivalent t o  the  switching function F2 = T ( K g l  + 821, where K > & 
p is Min g1 > 0, i f  the following two conditions are  satisfied: 

J 

t r  is 

is 
/PI,  

a)  Whenever g2 > 0, 81 > o  - 

b)  Whenever g1 > 0, g 2 +  k l  2 0  

A s  an  example of the use of these theorems,  the  threshold logic element 
collecti’ng points on the positive side of the  quantized surface offigure 1 is 
computed. The logic function collecting the squares  is 

2 2  2 3  4 3 4  F = xlU x 2  (xlU x l U  xl)LIx2 x1 

21 
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Define additional switching functions 
1 
2 f l  = x 

2 2  3 4 2 f 2  = x 2 ( x l U x l U x l )  = x2 h 2  

3 A  f3  - - x; x; 

Similarly, the threshold element which is t rue  only when f 2  is t r u e  is 

T(g2) = T(x2 2 h2)  = T(x2 2 f h 2  - 1) 

and the threshold element which is true only when h2 is t r u e  is, by theorem 
II 

= T(xl 2 + x1 3 + x l )  4 
h2 

C on s equ en t ly , 

T(g2) = T + T(x; + x; + 

But by theorem IV the threshold element equivalent to this is 

2 2 3 r 
T k2 + x1 + x1 i- x1 

4 2 because M i n x 2  > 0 = 1 and whenever (x2 + x 3  + x l )  > 0, x 2 0, whenever 
x2 2 0, (xl 2 + x l  2 3  + x l ) 2  4 0, i. e . ,  kl = b and-'.choose K = !? > -f. 

The threshold element which is t rue  only when f 1 o r  f 2  is t rue  is by 
heorem I1 and IV. 

f l U f 2  = T[T(x2)  1 + 

2 3 4  r 1  t x l  +Xl  - 11 2 + x l  = T 2 x 2 + x  
L 

2 2 3 4  because Min x1 > 0 - 1, and whenever x i  > 0, x2  + x1 + x1 + x l l -  0, i. e . ,  
k l  = 1 hence >l? = 2 >-+. 

2% 
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The threshold element which is t rue only when f 3  is true is 
= T(x2 3 + x ;  - 1) 

f 3  

By theorems I1 and IV 

because Min g1 
i. e. ~ kl = 1, hence, K = 2 > f. 

0 = 1, and when g2 > 0, g1 = 0, when g1 > 0, g + 1 2 0, 2 
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Table I .  - Logic element constants 

0 

0 

0 

0 

0 

-1 

-4 
-3 
-2  

-1 

-5 
-5  

- 7  

-8 

-7 
- 6  

Computed logic element constants for the 
quantized surface of figure 2. 

One-dimensional control of the plant 
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15 
14 
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1 

- 1  

- 2  

- 3  
- 4  
- 5  

- 6  
- 7  

- 8  

- 9  
- 10 
-11 

- 12 

-13 
- 14 
-15 
-16 

3 10 
295 

283 
2 67 

2 54 
239 
223 
206 
190 
172 

152 
130 
107 
81 

51 
+ 2  
- 122 

- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 
- 144 

20 

Table 11. - Logic element constants 

- 
84 
‘78 

72 
6 6  

60 
54 
52 
42 
40 
34 
28 
26 
20 

9 

5 
2 

- 4  

- 12 

- 16 
-22 
-28  

-35 
-39 
-46 
- 52 
- 58 
-61 
-66 
- 7 6  

-80 
-84 
-90 

- 1  
- 2 6  

- 51 
- 7 3  

- 96 
- 122 

- 145 
- 166 
- 189 
-2  12  

-235 
-259 
-284 
-306 
-330 
-353 

- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 

x = 55 
0 

0 1 3 +16 r 

u = sign 11 1 x . j  1 x j + x  
L i =  1 J =  - 1 6  J 

Computed logic element constants for the 
surface of figure 3. 

One-dimensional control of the plant 
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X 1 
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3 

4 

X 

X 
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4 5  

46  

40  

36 

33 

27 

2 4  

2 4  

22 

16 

13 

6 

0 

- 9  

-2  6 

-35  
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- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- - 

2 2  

- 
0 1 0 0 

0 -0. 0394 2. 140 -4.404 

0 1.00 -0.0274 -0 .0421 

0 0 0 0.02 
- 

Table IV. - Logic element constants 

- 
52 

7 0  

7 0  

7 0  

72 

77 

7 0  

46 

63 

65 

56 

46  

47 

32 

2 0  

14 

17 

6 

- 1  

- 8  

- 9  

- 13 

- 2 5  

- 2 6  

- 3 3  

- 4 0  

-39 

-43 

- 5 1  

-47 

- 4 9  

- 5 1  

- 
34 

32 

34 

30 

2 6  

3 0  

22 

2 5  

17 

15 

2 0  

13 

10 

11 

7 

6 

7 

5 

- 7  

2 

1 

- 6  

- 7  

- 5  

- 5  

- 4  

- 1 0  

-11 

- 12 

-11 

-15 

-11 

- 7 0  

- 6 0  

- 5 0  

- 52 

-46 

- 3 4  

-39 

-45  

- 13 

-2  1 

- 5  

-11 

- 6  

+ 7  

4 

12 

1 4  

19 

2 4  

2 6  

28  

33 

37 

39 

45  

50 

57 

58 

58 

58 

56 

69 

r 4 +16 1 

Adjusted logic element constants for 
one-dimensional control of the plant 

Set of 198 t ra jector ies  repeated 18 t imes.  

+ 
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Figure l(a). - Quantization 
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Figure l(b). - Simple quantized switching surface 
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Figure 2. - Complex quantized switching surface 
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Figure 3. - Quantized third-order switching surface 

2s 



- 26 - 

Figure 4. - Training and use  of the logic net 
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Figure 14. - Fourth-order logical net mechanization 
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